BlazeMaple BlazeMaple
首页
  • 基础知识

    • Java的基本数据类型
    • Java中的常用类String
    • Java中的异常
    • Java中的注解
    • Java中的反射机制
    • Java中的泛型
    • Java为什么是值传递
  • 集合框架

    • Java集合核心知识总结
    • HashMap的7种遍历方式
    • 源码分析
  • Java新特性

    • Java8新特性
  • IO流

    • Java基础IO总结
    • Java IO中的设计模式
    • Java IO模型
    • IO多路复用详解
  • 并发编程

    • 并发编程基础总结
  • JVM

    • JVM基础总结
  • MySQL

    • MySQL核心知识小结
    • MySQL 45讲
  • Redis

    • Redis核心入门知识简记
  • Spring
  • SpringCloud Alibaba
  • 开发工具

    • Git详解
    • Maven详解
    • Docker详解
    • Linux常用命令
  • 在线工具

    • json (opens new window)
    • base64编解码 (opens new window)
    • 时间戳转换 (opens new window)
    • unicode转换 (opens new window)
    • 正则表达式 (opens new window)
    • md5加密 (opens new window)
    • 二维码 (opens new window)
    • 文本比对 (opens new window)
  • 学习资源

    • 计算机经典电子书PDF
    • hot120
GitHub (opens new window)
首页
  • 基础知识

    • Java的基本数据类型
    • Java中的常用类String
    • Java中的异常
    • Java中的注解
    • Java中的反射机制
    • Java中的泛型
    • Java为什么是值传递
  • 集合框架

    • Java集合核心知识总结
    • HashMap的7种遍历方式
    • 源码分析
  • Java新特性

    • Java8新特性
  • IO流

    • Java基础IO总结
    • Java IO中的设计模式
    • Java IO模型
    • IO多路复用详解
  • 并发编程

    • 并发编程基础总结
  • JVM

    • JVM基础总结
  • MySQL

    • MySQL核心知识小结
    • MySQL 45讲
  • Redis

    • Redis核心入门知识简记
  • Spring
  • SpringCloud Alibaba
  • 开发工具

    • Git详解
    • Maven详解
    • Docker详解
    • Linux常用命令
  • 在线工具

    • json (opens new window)
    • base64编解码 (opens new window)
    • 时间戳转换 (opens new window)
    • unicode转换 (opens new window)
    • 正则表达式 (opens new window)
    • md5加密 (opens new window)
    • 二维码 (opens new window)
    • 文本比对 (opens new window)
  • 学习资源

    • 计算机经典电子书PDF
    • hot120
GitHub (opens new window)
  • IO流

    • Java基础IO总结
      • IO 流简介
      • 字节流
        • InputStream(字节输入流)
        • OutputStream(字节输出流)
      • 字符流
        • Reader(字符输入流)
        • Writer(字符输出流)
      • 字节缓冲流
        • BufferedInputStream(字节缓冲输入流)
        • BufferedOutputStream(字节缓冲输出流)
        • 字节流和字节缓冲流的性能比较
      • 字符缓冲流
      • 打印流
      • 随机访问流
    • Java IO中的设计模式
    • Java IO模型
    • IO多路复用详解
  • 并发编程

    • 并发编程基础总结
    • 深入理解volatile关键字
    • 深入理解synchronized关键字
  • JVM

    • JVM基础总结
  • Java进阶
  • IO流
BlazeMaple
2023-10-29
目录

Java基础IO总结

# IO 流简介

IO 即 Input/Output。数据输入到计算机内存的过程即输入,反之输出到外部存储(比如数据库,文件,远程主机)的过程即输出。IO 流在 Java 中分为输入流和输出流,而根据数据的处理方式又分为字节流和字符流。

Java IO 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。

  • InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。
  • OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

# 字节流

# InputStream(字节输入流)

InputStream用于从源头(通常是文件)读取数据(字节信息)到内存中,java.io.InputStream抽象类是所有字节输入流的父类。

常用方法:

  1. read():返回输入流中下一个字节的数据。返回的值介于 0 到 255 之间。如果未读取任何字节,则代码返回 -1 ,表示文件结束。

  2. read(byte b[ ]) : 从输入流中读取一些字节存储到数组 b 中。如果数组 b 的长度为零,则不读取。如果没有可用字节读取,返回 -1。如果有可用字节读取,则最多读取的字节数最多等于 b.length , 返回读取的字节数。这个方法等价于 read(b, 0, b.length)。

    public int read(byte b[]) throws IOException {
            return read(b, 0, b.length);
    }
    
    1
    2
    3
  3. read(byte b[], int off, int len):在read(byte b[ ]) 方法的基础上增加了 off 参数(偏移量)和 len 参数(要读取的最大字节数)。

  4. skip(long n):忽略输入流中的 n 个字节 ,返回实际忽略的字节数。

  5. available():返回输入流中可以读取的字节数。

  6. close():关闭输入流释放相关的系统资源。

从 Java 9 开始,InputStream 新增加了多个实用的方法:

  • readAllBytes():读取输入流中的所有字节,返回字节数组。
  • readNBytes(byte[] b, int off, int len):阻塞直到读取 len 个字节。
  • transferTo(OutputStream out):将所有字节从一个输入流传递到一个输出流。

FileInputStream 是一个比较常用的字节输入流对象,可直接指定文件路径,可以直接读取单字节数据,也可以读取至字节数组中

public class IOTest {

    public static void main(String[] args) {
        try (InputStream fis = new FileInputStream("input.txt")) {
            int available = fis.available();
            System.out.println("skip前输入流中可以读取的字节数" + available);//skip前输入流中可以读取的字节数12

            long skip = fis.skip(2);
            System.out.println("跳过的字节数 " + skip);//跳过的字节数 2

            available = fis.available();
            System.out.println("skip后输入流中可以读取的字节数" + available);//skip后输入流中可以读取的字节数10

            int content;
            System.out.println("读取input.txt");
            while ((content = fis.read()) != -1) {
                System.out.print((char) content);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

一般是不会直接单独使用 FileInputStream ,通常会配合 BufferedInputStream

// 新建一个 BufferedInputStream 对象
BufferedInputStream bufferedInputStream = new BufferedInputStream(new FileInputStream("input.txt"));
// 读取文件的内容并复制到 String 对象中
String result = new String(bufferedInputStream.readAllBytes());
System.out.println(result);
1
2
3
4
5

DataInputStream 用于读取指定类型数据,不能单独使用,必须结合其它流,比如 FileInputStream 。

FileInputStream fileInputStream = new FileInputStream("input.txt");
//必须将fileInputStream作为构造参数才能使用
DataInputStream dataInputStream = new DataInputStream(fileInputStream);
//可以读取任意具体的类型数据
dataInputStream.readBoolean();
dataInputStream.readInt();
dataInputStream.readUTF();
1
2
3
4
5
6
7

ObjectInputStream 用于从输入流中读取 Java 对象(反序列化),ObjectOutputStream 用于将对象写入到输出流(序列化)。

ObjectInputStream input = new ObjectInputStream(new FileInputStream("object.data"));
MyClass object = (MyClass) input.readObject();
input.close();
1
2
3

用于序列化和反序列化的类必须实现 Serializable 接口,对象中如果有属性不想被序列化,使用 transient 修饰

# OutputStream(字节输出流)

OutputStream用于将数据(字节信息)写入到目的地(通常是文件),java.io.OutputStream抽象类是所有字节输出流的父类。

常用方法:

  1. write(int b):将特定字节写入输出流。
  2. write(byte b[ ]) : 将数组b 写入到输出流,等价于 write(b, 0, b.length) 。
  3. write(byte[] b, int off, int len) : 在write(byte b[ ]) 方法的基础上增加了 off 参数(偏移量)和 len 参数(要读取的最大字节数)。
  4. flush():刷新此输出流并强制写出所有缓冲的输出字节。
  5. close():关闭输出流释放相关的系统资源。

FileOutputStream 是最常用的字节输出流对象,可直接指定文件路径,可以直接输出单字节数据,也可以输出指定的字节数组。

try (FileOutputStream output = new FileOutputStream("output.txt")) {
    byte[] array = "Java".getBytes();
    output.write(array);
} catch (IOException e) {
    e.printStackTrace();
}
1
2
3
4
5
6

类似于 FileInputStream,FileOutputStream 通常也会配合 BufferedOutputStream来使用。

FileOutputStream fileOutputStream = new FileOutputStream("output.txt");
BufferedOutputStream bos = new BufferedOutputStream(fileOutputStream)
1
2

DataOutputStream 用于写入指定类型数据,不能单独使用,必须结合其它流,比如 FileOutputStream 。

// 输出流
FileOutputStream fileOutputStream = new FileOutputStream("out.txt");
DataOutputStream dataOutputStream = new DataOutputStream(fileOutputStream);
// 输出任意数据类型
dataOutputStream.writeBoolean(true);
dataOutputStream.writeByte(1);
1
2
3
4
5
6

ObjectInputStream 用于从输入流中读取 Java 对象(ObjectInputStream,反序列化),ObjectOutputStream将对象写入到输出流(ObjectOutputStream,序列化)。

ObjectOutputStream output = new ObjectOutputStream(new FileOutputStream("file.txt")
Person person = new Person();
output.writeObject(person);
1
2
3

# 字符流

I/O 流操作要分为字节流操作和字符流操作呢?

  1. 字符流是由 Java 虚拟机将字节转换得到的,这个过程还算是比较耗时
  2. 如果不知道编码类型就很容易出现乱码问题。

音频文件、图片等媒体文件用字节流比较好,如果涉及到字符的话使用字符流比较好。

常见的编码有:

  1. utf8:英文一个字节,一个中文占3个字节。
  2. unicode:无论中文英文都占2个字节。
  3. gbk:一个英文1个字节,中文2个字节。

# Reader(字符输入流)

Reader用于从源头(通常是文件)读取数据(字符信息)到内存中,java.io.Reader抽象类是所有字符输入流的父类。

Reader 用于读取文本, InputStream 用于读取原始字节。

Reader 常用方法:

  1. read() : 从输入流读取一个字符。
  2. read(char[] cbuf) : 从输入流中读取一些字符,并将它们存储到字符数组 cbuf中,等价于 read(cbuf, 0, cbuf.length) 。
  3. read(char[] cbuf, int off, int len):在read(char[] cbuf) 方法的基础上增加了 off 参数(偏移量)和 len 参数(要读取的最大字符数)。
  4. skip(long n):忽略输入流中的 n 个字符 ,返回实际忽略的字符数。
  5. close() : 关闭输入流并释放相关的系统资源。

InputStreamReader 是字节流转换为字符流的桥梁,其子类 FileReader 是基于该基础上的封装,可以直接操作字符文件。

// 字节流转换为字符流的桥梁
public class InputStreamReader extends Reader {
}
// 用于读取字符文件
public class FileReader extends InputStreamReader {
}
1
2
3
4
5
6
try (FileReader fileReader = new FileReader("input.txt");) {
    int content;
    long skip = fileReader.skip(3);
    System.out.println("The actual number of bytes skipped:" + skip);
    System.out.print("The content read from file:");
    while ((content = fileReader.read()) != -1) {
        System.out.print((char) content);
    }
} catch (IOException e) {
    e.printStackTrace();
}
1
2
3
4
5
6
7
8
9
10
11

# Writer(字符输出流)

Writer用于将数据(字符信息)写入到目的地(通常是文件),java.io.Writer抽象类是所有字符输出流的父类。

Writer 常用方法:

  • write(int c) : 写入单个字符。
  • write(char[] cbuf):写入字符数组 cbuf,等价于write(cbuf, 0, cbuf.length)。
  • write(char[] cbuf, int off, int len):在write(char[] cbuf) 方法的基础上增加了 off 参数(偏移量)和 len 参数(要读取的最大字符数)。
  • write(String str):写入字符串,等价于 write(str, 0, str.length()) 。
  • write(String str, int off, int len):在write(String str) 方法的基础上增加了 off 参数(偏移量)和 len 参数(要读取的最大字符数)。
  • append(CharSequence csq):将指定的字符序列附加到指定的 Writer 对象并返回该 Writer 对象。
  • append(char c):将指定的字符附加到指定的 Writer 对象并返回该 Writer 对象。
  • flush():刷新此输出流并强制写出所有缓冲的输出字符。
  • close():关闭输出流释放相关的系统资源。

OutputStreamWriter 是字符流转换为字节流的桥梁,其子类 FileWriter 是基于该基础上的封装,可以直接将字符写入到文件。

// 字符流转换为字节流的桥梁
public class OutputStreamWriter extends Writer {
}
// 用于写入字符到文件
public class FileWriter extends OutputStreamWriter {
}
1
2
3
4
5
6

FileWriter 代码示例:

try (Writer output = new FileWriter("output.txt")) {
    output.write("你好!!")
} catch (IOException e) {
    e.printStackTrace();
}
1
2
3
4
5

FileWriter 实现数据追加

//传递一个true参数,代表不覆盖已有的文件。并在已有文件的末尾处进行数据续写。
FileWriter fw = new FileWriter("demo.txt",true);
1
2

# 字节缓冲流

IO 操作是很消耗性能的,缓冲流将数据加载至缓冲区,一次性读取/写入多个字节,从而避免频繁的 IO 操作,提高流的传输效率。

字节流和字节缓冲流的性能差别主要体现在我们使用两者的时候都是调用 write(int b) 和 read() 这两个一次只读取一个字节的方法的时候。由于字节缓冲流内部有缓冲区(字节数组),因此,字节缓冲流会先将读取到的字节存放在缓存区,大幅减少 IO 次数,提高读取效率。

# BufferedInputStream(字节缓冲输入流)

BufferedInputStream 读取数据到内存的过程中不会一个字节一个字节的读取,而是会先将读取到的字节存放在缓存区,并从内部缓冲区中单独读取字节。这样大幅减少了 IO 次数,提高了读取效率。

BufferedInputStream 内部维护了一个缓冲区,这个缓冲区实际就是一个字节数组,通过阅读 BufferedInputStream 源码即可得到这个结论。

public
class BufferedInputStream extends FilterInputStream {
    // 内部缓冲区数组
    protected volatile byte buf[];
    // 缓冲区的默认大小
    private static int DEFAULT_BUFFER_SIZE = 8192;
    // 使用默认的缓冲区大小
    public BufferedInputStream(InputStream in) {
        this(in, DEFAULT_BUFFER_SIZE);
    }
    // 自定义缓冲区大小
    public BufferedInputStream(InputStream in, int size) {
        super(in);
        if (size <= 0) {
            throw new IllegalArgumentException("Buffer size <= 0");
        }
        buf = new byte[size];
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

缓冲区的大小默认为 8192 字节,可以通过 BufferedInputStream(InputStream in, int size) 构造方法指定缓冲区的大小

# BufferedOutputStream(字节缓冲输出流)

BufferedOutputStream 将数据(字节信息)写入到目的地(通常是文件)的过程中不会一个字节一个字节的写入,而是会先将要写入的字节存放在缓存区,并从内部缓冲区中单独写入字节。这样大幅减少了 IO 次数,提高了读取效率

try (BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("output.txt"))) {
    byte[] array = "Java".getBytes();
    bos.write(array);
} catch (IOException e) {
    e.printStackTrace();
}
1
2
3
4
5
6

类似于 BufferedInputStream ,BufferedOutputStream 内部也维护了一个缓冲区,并且,这个缓存区的大小也是 8192 字节。

# 字节流和字节缓冲流的性能比较

字节流和字节缓冲流的性能差别主要体现在我们使用两者的时候都是调用 write(int b) 和 read() 这两个一次只读取一个字节的方法的时候。由于字节缓冲流内部有缓冲区(字节数组),因此,字节缓冲流会先将读取到的字节存放在缓存区,大幅减少 IO 次数,提高读取效率。

public class BufferIOTest {

    public static void main(String[] args) throws IOException {
        long start = System.currentTimeMillis();
        int content;
        try (FileInputStream fis = new FileInputStream("dpcq.txt");
            FileOutputStream fos = new FileOutputStream("fosdpcq.txt")) {
            /**
             * public int read() throws IOException {
             *         return read0();
             *     }
             */
            while ((content = fis.read()) != -1) {
                fos.write(content);
            }
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        long end = System.currentTimeMillis();
        System.out.println("FileOutputStream:" + (end - start));


        start = System.currentTimeMillis();
        try (BufferedInputStream fis = new BufferedInputStream(new FileInputStream("dpcq.txt"));
            BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("fosdpcq.txt"))) {
            /**
             * public synchronized int read() throws IOException {
             *         if (pos >= count) {
             *             fill();
             *             if (pos >= count)
             *                 return -1;
             *         }
             *         return getBufIfOpen()[pos++] & 0xff;
             *     }
             */
            while ((content = fis.read()) != -1) {
                /**
                 * 可以看到超过了buf才执行写入
                 * public synchronized void write(int b) throws IOException {
                 *         if (count >= buf.length) {
                 *             flushBuffer();
                 *         }
                 *         buf[count++] = (byte)b;
                 *     }
                 */
                bos.write(content);
            }
        }
        end = System.currentTimeMillis();
        System.out.println("BufferedOutputStream:" + (end - start));
    }

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
FileOutputStream:26708
BufferedOutputStream:52
1
2

# 字符缓冲流

BufferedReader (字符缓冲输入流)和 BufferedWriter(字符缓冲输出流)类似于 BufferedInputStream(字节缓冲输入流)和BufferedOutputStream(字节缓冲输入流),内部都维护了一个字节数组作为缓冲区。不过,前者主要是用来操作字符信息。

# 打印流

System.out.print("Hello!");
System.out.println("Hello!");
1
2

System.out 实际是用于获取一个 PrintStream 对象,print方法实际调用的是 PrintStream 对象的 write 方法。

PrintStream 属于字节打印流,与之对应的是 PrintWriter (字符打印流)。PrintStream 是 OutputStream 的子类,PrintWriter 是 Writer 的子类。

public class PrintStream extends FilterOutputStream
    implements Appendable, Closeable {
}
public class PrintWriter extends Writer {
}
1
2
3
4
5

# 随机访问流

RandomAccessFile 的构造方法如下,我们可以指定 mode(读写模式)。

// openAndDelete 参数默认为 false 表示打开文件并且这个文件不会被删除
public RandomAccessFile(File file, String mode)
    throws FileNotFoundException {
    this(file, mode, false);
}
// 私有方法
private RandomAccessFile(File file, String mode, boolean openAndDelete)  throws FileNotFoundException{
  // 省略大部分代码
}
1
2
3
4
5
6
7
8
9

读写模式主要有下面四种:

  • r : 只读模式。
  • rw: 读写模式
  • rws: 相对于 rw,rws 同步更新对“文件的内容”或“元数据”的修改到外部存储设备。
  • rwd : 相对于 rw,rwd 同步更新对“文件的内容”的修改到外部存储设备。

文件内容指的是文件中实际保存的数据,元数据则是用来描述文件属性比如文件的大小信息、创建和修改时间。

RandomAccessFile 中有一个文件指针用来表示下一个将要被写入或者读取的字节所处的位置。我们可以通过 RandomAccessFile 的 seek(long pos) 方法来设置文件指针的偏移量(距文件开头 pos 个字节处)。如果想要获取文件指针当前的位置的话,可以使用 getFilePointer() 方法。

RandomAccessFile 代码示例:

RandomAccessFile randomAccessFile = new RandomAccessFile(new File("input.txt"), "rw");
System.out.println("读取之前的偏移量:" + randomAccessFile.getFilePointer() + ",当前读取到的字符" + (char) randomAccessFile.read() + ",读取之后的偏移量:" + randomAccessFile.getFilePointer());
// 指针当前偏移量为 6
randomAccessFile.seek(6);
System.out.println("读取之前的偏移量:" + randomAccessFile.getFilePointer() + ",当前读取到的字符" + (char) randomAccessFile.read() + ",读取之后的偏移量:" + randomAccessFile.getFilePointer());
// 从偏移量 7 的位置开始往后写入字节数据
randomAccessFile.write(new byte[]{'H', 'I', 'J', 'K'});
// 指针当前偏移量为 0,回到起始位置
randomAccessFile.seek(0);
System.out.println("读取之前的偏移量:" + randomAccessFile.getFilePointer() + ",当前读取到的字符" + (
1
2
3
4
5
6
7
8
9
10

RandomAccessFile 的 write 方法在写入对象的时候如果对应的位置已经有数据的话,会将其覆盖掉。

RandomAccessFile randomAccessFile = new RandomAccessFile(new File("input.txt"), "rw");
randomAccessFile.write(new byte[]{'H', 'I', 'J', 'K'});
1
2

RandomAccessFile 比较常见的一个应用就是实现大文件的 断点续传

帮助我们改善此页面! (opens new window)
上次更新: 2024/08/13, 09:07:12
Java IO中的设计模式

Java IO中的设计模式→

最近更新
01
SpringCloud Alibaba实战
08-22
02
SpringCloud Alibaba核心知识
08-22
03
两数之和
08-08
更多文章>
Theme by Vdoing | Copyright © 2023-2024 BlazeMaple
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式